Order example

Burst pressure curve (Reference value)

Specification

Model	UM *
Medium	Air
Max. operating pressure	$116 \mathrm{psi}(0.8 \mathrm{MPa})\left(65 \% \mathrm{RH}\right.$ at $\left.20^{\circ} \mathrm{C}\right)(* 1)$
Working vacuum	$-29.5 \mathrm{in} . \mathrm{Hg}(-100 \mathrm{kPa})$
Ambient temperature	$-5 \sim+140^{\circ} \mathrm{F}\left(-15 \sim+60^{\circ} \mathrm{C}\right)(\mathrm{No}$ freezing $)$

* 1. Max. operating pressure is the value at $65 \% \mathrm{RH}$ at $20^{\circ} \mathrm{C}$ When using on other temperatures. please take enough safety value judging from the burst pressure curve on the left. When the tube is applied to moving parts with vibration and bend, the temperature might rise due to self-heat generation due to molecule heat generation and lead to breakage of the tube.

Mindman brand PU tube

Model	ID \times OD (mm)	Each roll (m)	Available color
UM0425	2.5×4	100	$\mathrm{~B}, \mathrm{BU}, \mathrm{CB}, \mathrm{O}, \mathrm{G}, \mathrm{Y}, \mathrm{R}, \mathrm{T}$
UM0640	4×6	100	$\mathrm{~B}, \mathrm{BU}, \mathrm{CB}, \mathrm{O}, \mathrm{G}, \mathrm{Y}, \mathrm{R}, \mathrm{T}$
UM0850	5×8	100	$\mathrm{~B}, \mathrm{BU}, \mathrm{CB}, \mathrm{O}, \mathrm{G}, \mathrm{Y}, \mathrm{R}, \mathrm{T}$
UM1065	6.5×10	100	B, BU, CB, O, G, Y, R, T
UM1280	8×12	100	B, BU, CB, O, G, Y, R, T

Available color

- Black(B), Blue(BU), Transparent blue(CB), Orange(O),
- Green(G), Yellow(Y), Red(R), OTransparent(T)

Measurement of minimum bending radius and minimum mounting radius

Model	Min.bending radius (mm)	Min.mounting radius (mm)	Weight (g/m)
UM0425	10	15	9
UM0640	15	23	19
UM0850	15	23	36
UM1065	20	30	54
UM1280	30	45	74

Minimum bending radius (JIS method)
JIS method (based on JIS B8381)
The mandrel radius is measured when the tube is tightly wound around mandrel (round bar) and the deforming ratio becomes 25%. Measurement condition: $20^{\circ} \mathrm{C}, 65 \% \mathrm{RH}$

$$
N=1-\frac{L-D}{2 d} \times 100
$$

$\mathrm{N}=$ deforming ratio (\%) standard value less than 25%
$\mathrm{d}=$ Tube diameter (mm)
$\mathrm{L}=$ Measurement amount (mm) $\mathrm{D}=$ Mandrel diameter (mm)

Minimum mounting radius (Vice method)

- Fix the tube as shown on the left and bring moving end close to fixed end gradually.
- Measure R when "a" dimension deforms 25% from initial value.

